IMG_1478 (700x393)IMG_1482 (700x392)IMG_1476 (700x394)IMG_1477 (700x394)IMG_1465 (700x394)IMG_1466 (700x395)IMG_1467 (700x394)IMG_1468 (700x392)IMG_1469 (700x392)IMG_1470 (700x392)IMG_1471 (700x392)IMG_1472 (700x393)IMG_1473 (700x392)IMG_1474 (700x395)IMG_1475 (700x394)IMG_1460 (700x392)IMG_1461 (700x392)IMG_1462 (700x392)IMG_1463 (700x393)IMG_1464 (700x394)IMG_1447 (700x394)IMG_1249 (700x394)IMG_1250 (2) (700x394)IMG_1250 (700x394)IMG_1251 (700x394)IMG_1252 (700x392)IMG_1254 (700x394)IMG_1255 (2) (700x394)IMG_1255 (700x393)IMG_1256 (700x394)IMG_1257 (700x393)IMG_1259 (700x394)IMG_1261 (700x394)IMG_1264 (700x394)IMG_1246 (700x393)IMG_1247 (700x394)IMG_1219 (700x394)IMG_1220 (700x393)IMG_1221 (700x395)IMG_1222 (700x393)IMG_1223 (700x394)IMG_1224 (700x394)IMG_1225 (700x394)IMG_1226 (700x393)IMG_1245 (2) (700x392)IMG_1245 (700x392)IMG_1175 (700x393)IMG_1189 (700x393)IMG_1190 (700x395)IMG_1191 (700x393)IMG_1193 (700x395)IMG_1217 (700x393)

Featured

Locker Problem (Multiples, Squares, Primes, Factors, Patterns)

One hundred students are assigned lockers 1 through 100. The student assigned to locker number 1 opens all 100 lockers. The student assigned to locker number 2 then closes all lockers whose numbers are multiples of 2. The student assigned to locker number 3 changes the status of all lockers whose numbers are multiples of 3 (e.g.

Equilateral Triangles, Midpoints, Midlines, Medians, and Geometric Probability

We are coming close to the end of our 14th season of Mathlete Nation’s discovery of mathematics and its mysteries. While playing with a compass used to draw circles, I discovered that with a single line segment, if I set the compass at that segment’s distance, and draw arcs from each endpoint of the segment, the intersection creates a third point.

Fraction Capture with Cube Dice

After exploring dividing a circle into equal sectors and shading in all equivalent fractions, we are now playing the ultimate fraction game: Fraction Capture.

 

Golden Angle, Factoring 360, Proper Fraction Shading

Continuing our exploration of the Golden Ratio of 1.618….., the children learned how to use a protractor to measure an obtuse angle of 137.5 degrees. We then discussed the difference between an obtuse angle (between 90 and 180 degrees), an acute angle (between 0 and 90 degrees) and a right angle (90 degrees).