IMG_1478 (700x393)IMG_1482 (700x392)IMG_1474 (700x395)IMG_1475 (700x394)IMG_1476 (700x394)IMG_1477 (700x394)IMG_1465 (700x394)IMG_1466 (700x395)IMG_1467 (700x394)IMG_1468 (700x392)IMG_1469 (700x392)IMG_1470 (700x392)IMG_1471 (700x392)IMG_1472 (700x393)IMG_1473 (700x392)IMG_1447 (700x394)IMG_1460 (700x392)IMG_1461 (700x392)IMG_1462 (700x392)IMG_1463 (700x393)IMG_1464 (700x394)IMG_1264 (700x394)IMG_1249 (700x394)IMG_1250 (2) (700x394)IMG_1250 (700x394)IMG_1251 (700x394)IMG_1252 (700x392)IMG_1254 (700x394)IMG_1255 (2) (700x394)IMG_1255 (700x393)IMG_1256 (700x394)IMG_1257 (700x393)IMG_1259 (700x394)IMG_1261 (700x394)IMG_1245 (2) (700x392)IMG_1245 (700x392)IMG_1246 (700x393)IMG_1247 (700x394)IMG_1219 (700x394)IMG_1220 (700x393)IMG_1221 (700x395)IMG_1222 (700x393)IMG_1223 (700x394)IMG_1224 (700x394)IMG_1225 (700x394)IMG_1226 (700x393)IMG_1175 (700x393)IMG_1189 (700x393)IMG_1190 (700x395)IMG_1191 (700x393)IMG_1193 (700x395)IMG_1217 (700x393)


FREE FALL ACCELERATION DUE TO GRAVITY—Aristotle to Galileo to Newton (F = M x A)

Want to see an object accelerate?

Aerodynamics--4 forces--Nakamura Lock, Phoenix, Balcony Bomber

What Is Aerodynamics?


Kramer Rocket Construction with Right Isosceles Triangles

I had the children draw their favorite triangles. I loved the diversity of triangles created by the children: acute, obtuse, and right triangles; scalene, isosceles and equilateral triangles. I told the Mathletes that my favorite is the isosceles right triangle otherwise known as a 45-45-90 triangle.

Magic Squares Even Ordered 4n x 4n Multiples

After a fun week working with odd ordered magic squares and watching the children follow a complicated algorithm, I wanted to continue with even ordered magic squares. The 6x6, 10x10, 14x14 algorithm is a little too much but the 4x4, 8x8, 12x12, etc. is very achievable.

We first discussed an unusual discovery, that the only magic square not possible is 2x2. Although the magic number should be 5, it is not achievable. A 1x1 Magic Square was fun to discuss and prove.

Magic Squares Odd Ordered (3x3, 5x5, 7x7, .....)

We have been working with magic squares in which each column, row, and both diagonals sum to the same value. However, the only magic square children every get to solve is the 3x3 which is relatively easy.