IMG_1478 (700x393)IMG_1482 (700x392)IMG_1474 (700x395)IMG_1475 (700x394)IMG_1476 (700x394)IMG_1477 (700x394)IMG_1465 (700x394)IMG_1466 (700x395)IMG_1467 (700x394)IMG_1468 (700x392)IMG_1469 (700x392)IMG_1470 (700x392)IMG_1471 (700x392)IMG_1472 (700x393)IMG_1473 (700x392)IMG_1447 (700x394)IMG_1460 (700x392)IMG_1461 (700x392)IMG_1462 (700x392)IMG_1463 (700x393)IMG_1464 (700x394)IMG_1264 (700x394)IMG_1249 (700x394)IMG_1250 (2) (700x394)IMG_1250 (700x394)IMG_1251 (700x394)IMG_1252 (700x392)IMG_1254 (700x394)IMG_1255 (2) (700x394)IMG_1255 (700x393)IMG_1256 (700x394)IMG_1257 (700x393)IMG_1259 (700x394)IMG_1261 (700x394)IMG_1245 (2) (700x392)IMG_1245 (700x392)IMG_1246 (700x393)IMG_1247 (700x394)IMG_1219 (700x394)IMG_1220 (700x393)IMG_1221 (700x395)IMG_1222 (700x393)IMG_1223 (700x394)IMG_1224 (700x394)IMG_1225 (700x394)IMG_1226 (700x393)IMG_1175 (700x393)IMG_1189 (700x393)IMG_1190 (700x395)IMG_1191 (700x393)IMG_1193 (700x395)IMG_1217 (700x393)


Two-Digit Number that Certain Sum and Difference (K-1st Graders Only)

The K-1st Grade classes explored two-digit numbers that had a sum of a certain number and a difference of a certain number. This challenge causes them to think about addition and substraction at the same time and strategically look for patterns.

Math Logic Contest (Math Challenge Spring 2018)


Fractals in Pascal's Triangle (5s, 1s, 2s, 4s in 1, 2, and 3 digits; multiples of 10, 2, 4, and 8)

We created beautiful fractals last week from mere triangles, quadrilaterals and inscribed circles. The children did a wonderful job of mimicking nature’s obsession with fractals. I showed them the following video of 15 plants that form spectacular fractals. 

Fractals: Self-Similarity--Inscribed Triangles, Circles, Quadrilaterals, Right Triangles

Fractals are self-similar objects. What does self-similarity mean? If you look carefully at a fern leaf, you will notice that every little leaf - part of the bigger one - has the same shape as the whole fern leaf. You can say that the fern leaf is self-similar.

Constructing Regular Hexagons, Equilateral Triangles, and Derivative Works

Last week, we explored the three regular polygons that tessellate: the square, the equilateral triangle, and the regular hexagon. Creating a regular hexagon or an equilateral triangle can be done with only a compass and straight edge. This was the only way the ancient Greeks explored geometry.